手机射频为什么要两个功放IC 手机射频功放设计技术介绍

小编 2024-11-24 方案设计 23 0

手机射频功放设计技术介绍

硅 vs III/V族器件工艺

尽管CMOS技术在过去几年得到了加强,但60%的手机功放市场仍然由III/V族制造商主导,如RFMD,Skyworks和Triquint( RFMD和Triquint合并成了现在的Qorvo)。 在实际应用中,GaAs pHEMT或者InGaP HBT是设计手机PA模块最常用的器件技术。 这些技术在截止频率、击穿电压、坚固可靠性、线性度、功率密度和过渡时间等方面都表现出了最佳的性能。

表1概述了手机射频功放设计目前所采用技术特性

表1 从PA设计角度比较各种工艺技术

乘积f T * BV(截止频率乘以漏源击穿电压)是评估技术在高功率射频应用中的符合性的有用标准。 表2提供了各种工艺的比较数据。 硅LDMOS由于其低成本、高线性,主要应用于基站射频PA市场。 基于GaN或SiC衬底上的功放技术似乎也是非常有前途的,因为它们提高了射频和热性能。 尽管线性较低,但它们的目标是与硅LDMOS竞争,特别是在WCDMA(3G)或LTE(4G)基础设施部署方面。

表2 III/V族和SiGe的性能比较表

先前的讨论提出了CMOS/BICMOS 的制造在未来几年内可能在PA市场上发挥作用的问题。 手机功率放大器领域的领先公司通常在系统封装组件(SIP)中提出多模式多波段PA模块。 这种小型化和复杂的SIP组件包括一个或几个GaAs/InGaP功率die,CMOS控制器IC和集成耦合器/信号提取器(即滤波器)。 这一趋势将在未来的现代无线终端中走向更高的复杂性。事实上,在一个单一模块上需要联合处理更多的工作频段(GSM、EDGE、WCDMA、LTE、蓝牙、WIMAX等)以及集成更多的功能(电源管理、MIMO等)。

这两项要求导致了必要的SIP叠层面积的增加,BoM物料清单(大量的PA die,无源滤波器等)以及

成本的增加。 这可能有利于单模解决方案,并强调了BICMOS技术的优点,它们的成本相对较低,性能持续良好,它们能够很容易地将功率放大器与功率检测器(滤波器)、控制器电路、传感器(例如温度探头)和同一die上的任何其他模拟/数字块共集成;而与GaAs工艺共集成是相当不切实际的。

ST微电子0.25µm的BICMOS技术介绍

工艺概述

ST微电子BICMOS 0.25µm技术(B7 RF)是一种SiGe工艺,它允许涵盖所有数字、模拟以及射频应用。 尽管要处理的物理层数量相对较高,但与最先进的CMOS对应方相比,每平方毫米的成本仍然很低。 它具有集成能力、击穿电压和射频性能之间的良好折中,因为它具有较高的衬底电阻率。 它提供了一个厚的顶部金属层(Al或铜选项),使设计中等品质因子(即Q因子)的无源器件(在2GHz电感的Q值达到10),并提供设计稳定可靠的电迁移(高达5uA/µm),以及低寄生电容效应。 有源器件包括用于高速低噪声应用的MOS和SiGe异质结双极晶体管(HBT),以及用于功率放大的横向掺杂MOS(LDMOS)和高压HBT。 LDMOS器件致力于高频应用,必须与几何相似的漂移MOS(包括LOCOS)和致力于电源管理IO(低频和高压特性)区分开来。 额外的组件,如用于功率检测的肖特基二极管也是可以用来设计的。

后面我们会更加详细地介绍ST微电子的0.25µm BICMOS工艺技术的各种类型的器件以及工艺参数。

射频芯片,5G手机里的一颗明珠

据统计,2020年第四季度,我国手机市场继续由4G向5G过渡,5G手机产品款型数占比已达六成。2021年全球智能手机出货量将达约 13.55 亿台,其中 5G 机型将有 5.39 亿台。对于制造而言压力着实不小,5G手机性能的好坏取决于内部的两大芯片——射频(RF)和基带。下面就带您了解一下射频芯片的奥秘。

简单来说,射频芯片的作用就是信息发送和接收。为什么说它如此重要?如果没有它,你的手机就是好几千块钱的大铁块。

先从射频说起,射频就是射频电流,是一种高频交流变化电磁波,是可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流 (大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

而射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形,并通过天线谐振发送出去的一个电子元器件,它包括功率放大器、低噪声放大器和天线开关。射频芯片架构包括接收通道和发射通道两大部分。

工作原理

这是射频电路的原理图,射频芯片架构包括接收通道和发射通道两大部分:

接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息,送到逻辑音频电路进一步处理。

发射时,把逻辑电路处理过的发射基带信息调制成的发射中频,用发射压控振荡器TX-VCO把发射中频信号频率上变为890M-915M(GSM)的频率信号。经功放放大后由天线转为电磁波辐射出去。

对于现有的GSM和TD-SCDMA模式而言,终端增加支持一个频段,则其射频芯片相应地增加一条接收通道,但是否需要新增一条发射通道则视新增频段与原有频段间隔关系而定。对于具有接收分集的移动通信系统而言,其射频接收通道的数量是射频发射通道数量的两倍。这意味着终端支持的LTE频段数量越多,则其射频芯片接收通道数量将会显著增加。打个比方,若新增 M个GSM或TD-SCDMA模式的频段,则射频芯片接收通道数量会增加M条;若新增M个TD-LTE或FDD LTE模式的频段,则射频芯片接收通道数量会增加2M条。LTE频谱相对于2G/3G较为零散,为通过FDD LTE实现国际漫游,终端需要支持较多的频段,这就导致了射频芯片面临成本和体积增加的挑战。

其实设计一个良好的射频芯片还是很头疼的。首先射频芯片设计需要的理论知识非常多,很多设计理论甚至被人认为“玄乎”,而且射频芯片的设计存在各种指标的折中均衡,什么样的折中是最佳的?怎样折中是取决于产品的实际应用要求,没有定论。再者,很多射频芯片的指标要求都是要挑战工艺极限,这就需要很多创新性电路结构,例如噪声抵消、交调分量抵消、为了提高功放效率采用的动态偏置,有时为了降低功耗也是想尽了办法。

硬性困难还是工艺及封装。射频芯片最重要的指标是噪声系数和线性度,这两个指标和工艺完全相关,例如CMOS工艺衬底上就会耦合过来各种噪声干扰,CMOS器件的线性度也很差,这种难题是硬伤,如不解决好,只能通过合适的电路结构或者采取一些无法定量分析的隔离措施来缓解问题,这就存在很多不确定性了。除此之外,还有寄生参数、寄生电阻、电容和频率之间的权衡。

最后的封装亦是一大难点。小小的一根封装引线就是1nH以上的电感,这些电感对射频芯片的影响实在是太大了。在成本可控的前提下尽量采用先进的封装形式,减少封装带来的引线电感。

对于5G射频芯片,一方面频率升高导致电路中连接线的对电路性能影响更大,封装时需要减小信号连接线的长度;另一方面需要把功率放大器、低噪声放大器、开关和滤波器封装成为一个模块,一方面减小体积另一方面方便下游终端厂商使用。为了减小射频参数的寄生需要采用Flip-Chip、Fan-In和Fan-Out封装技术。可以看出,到5G时代,高性能Flip-Chip/Fan-In/Fan-Out结合Sip封装技术会是未来封装的趋势。

玩家盘点

成本昂贵,95%的市场被欧美厂商把持

通常情况下,一部手机主板使用的射频芯片占整个线路面板的30%-40%。据悉,一部iPhone 7仅射频芯片的成本就高达24美元,有消息称苹果今年每部手机在射频芯片上的投入将历史性地超过30美元。随着智能手机迭代加快,射频芯片也将迎来一波高峰。

目前,手机中的核心器件大多已实现了国产化,唯独射频器件仍在艰难前行。据悉,全球约95%的市场被控制在欧美厂商手中,甚至没有一家亚洲厂商进入顶尖行列。简单盘点一下在这个圈子里的国内外玩家:

国内

信维通信,产品线已从天线向射频隔离、射频连接器、射频材料扩展;

硕贝德,在5G天线及射频前端模组上的开发处于国内领先水平;

麦捷科技,片式电感及LTCC射频元器件的龙头厂商。

长盈精密,国内最优秀的射频前端集成电路设计和制造商之一,拥有两大核心技术,分别为基于GaAs pHEMT工艺的功率放大器与包络跟踪电源系统。

顺络电子,国内电感和射频元件龙头。

唯捷创芯,国内最大射频IC设计公司。

中兴通讯,全球领先的综合通信解决方案提供商。

紫光展锐,产品涵盖2G/3G/4G/5G移动通信基带芯片、物联网芯片、射频芯片、无 线连接芯片、安全芯片、电视芯片。

国外

Skyworks(思佳讯)

射频元件龙头,苹果射频供应商,主营方向为射频前端产品,包括射频功率放大器即RF PA、各种滤波器、混频器、衰减器等。

Qorvo(RFMD与TriQuint)

Qorvo 由 RFMD 和 TriQuint 合并而成。兼具 RFMD 和 TriQuint 的技术、集体经验和智慧资源,是移动、基础设施和国防应用领域可扩展和动态 RF 解决方案的全球领导者。

TriQuint(超群半导体,与RFMD合并)

Murata(村田)(收购Renesas的功率放大器业务):村田主营产品有陶瓷电容、陶瓷滤波器、高频零件、无线传感器等。前阵子,村田宣布收购意大利的无线射频(RFID)技术新创企业ID-Solutions,加速物联网布局。

Epcos,世界上最大的电子元器件制造商之一,产品主要市场在通信领域、消费领域、汽车领域及工业电子领域。

此外还有恩智浦(NXP)、科锐、Macom、美信半导体、ADI、英飞凌、Avago(收购博通有线/无线芯片业务)、博通集成、高通、三星…

相关问答

请问这个是什么类功放,两个NPN管子是如何工作的?

我只定性分析下:1.两个NPN管子,看似是AB类放大,但其实两个管子的导通时刻并不互补,而是相同的,虽然输入小信号极性相反。这倒不重要。2.二极管D1和R2...我...

手机的工作原理-aide23的回答-懂得

智能手2113机,像个人电脑一样,具有独立的操5261作系统4102,只要组成有电源部分1653,逻辑部分,射频部分,输入输出部分。逻辑部分是指CPU,字库,暂存等...

HT6809这款音频功放IC是数字音量控制的吗?

[回答]TDA1519C是2*11W双声道功放集成电路,在输出端必须用于47K的双联电位器来调节音量。类别:放大器必须很少的桥接外部元件阻抗(BTL)的运作立...

智能手机有多少个元件组成?

智能手机可以被看作袖珍的计算机,主要组成部件如下:1、处理器(芯片),智能手机最重要的组成部件,手机专用芯片,这些芯片包括:射频芯片、射频功放芯片、处...

手机芯片容量有多大手机有哪些芯片组成??-彤无敌的回答...

手机是分平台的,有TIPHILIPS等,无论什么平台都有的芯片是:ABB(ANALOGBASEBAND)就是所谓的电源,DBB(DIGITALBASEBAND)就是CPU,还有就是FLASH,射频的T...

旋钮式有线电视放大器的旋钮ATT和EQ分别调什么的?

于放大器的放大模块,其增益是固定的,所以一般为降低入户电平使用。EQ=equilibrium。均衡。调整入户信号高低频段信号电平,使高低频段的电平趋于平衡。由于...

帮个忙诸位老师!有谁懂,性价比高的IC烧录原理质量保障,IC...

[回答]手机分为电源部分,逻辑部分,射频部分,输入输出部分首先输入输出部分指的是键盘,显示屏,麦克风,听筒等逻辑部分是指CPU,字库,暂存等,作用就是控制手...

【我正在学修手机,想主要的了解一下手机里面零件的结构、以...

[最佳回答]手机电路分射频电路和逻辑电路,射频一般位于主板的上半部分,它的作用是信号处理,因此射频电路故障是信号弱、无讯号、等一般不会引起不开机.射频电...

ru是什么通讯设备?

是射频部分的板卡(RU)通过光纤等介质与基带部分相连,但是该RU部分远离基带部分。该射频部分包括上下行功放,上下行滤波器,双工器等是射频部分的板卡(RU)通过...

合成射频功放的调法?

合成射频功放的调整方法如下:确认射频合成器的基本参数,如频率范围、精度、稳定性和输出功率等。调整参考振荡器,根据需要调整参考振荡器的频率和稳定性。...