射频功放芯片和射频ic有什么区别 射频芯片知识科普

小编 2024-10-07 技术分享 23 0

射频芯片知识科普

大家在日常使用的智能手机,打电话、发短信、上网等等功能,给我们生活带来了便利。在我们日常使用手机中,有一个小小芯片,很不起眼,但是却支撑着我们上网通讯的全部工作。

稍微有点无线电知识的朋友就知道,手机发射信号出去,这个发热信号的就是射频芯片。因为一旦手机没有它,电话、上网都是徒劳。本期推文,就一起科普射频芯片。

一、基本概念

射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形, 并通过天线谐振发送出去的一个电子元器件。射频芯片架构包括接收通道和发射通道两大部分。对于现有的GSM和TD-SCDMA模式而言,终端增加支持一个频段,则其射频芯片相应地增加一条接收通道,但是否需要新增一条发射通道则视新增频段与原有频段间隔关系而定。对于具有接收分集的移动通信系统而言,其射频接收通道的数量是射频发射通道数量的两倍。

这意味着终端支持的LTE频段数量越多,则其射频芯片接收通道数量将会显著增加。例如,若新增 M个GSM或TD-SCDMA模式的频段,则射频芯片接收通道数量会增加M条;若新增M个TD-LTE或FDD LTE模式的频段,则射频芯片接收通道数量会增加2M条。LTE频谱相对于2G/3G较为零散,为通过FDD LTE实现国际漫游,终端需支持较多的频段,这将导致射频芯片面临成本和体积增加的挑战。

为减小芯片面积、降低芯片成本,可以在射频芯片的一个接收通道支持相邻的多个频段和多种模式。当终端需要支持这一个接收通道包含的多个频段时,需要在射频前端增加开关器件来适配多个频段对应的接收SAW滤波器或双工器,这将导致射频前端的体积和成本提升,同时开关的引入还会降低接收通道的射频性能。因此,如何平衡射频芯片和射频前端在体积、成本上的矛盾,将关系到整个终端的体积和成本。

此外,单射频芯片支持TD-LTE和FDD LTE不存在技术门槛,众多厂家已有相应产品问世。与基带芯片略有不同的是,在多模射频芯片增加对TD-SCDMA的支持难度相对较低。

二、无线通信系统

无线通信系统中,一般包含有天线、射频前端、射频收发模块以及基带信号处理器四个部分。随着5G时代的,天线以及射频前端的需求量及价值均快速上升,射频前端是将数字信号向无线射频信号转化的基础部件,也是无线通信系统的核心组件。

按照功能,可将射频前端分为发射端Tx以及接收端Rx。

按照器件不同,射频前端可分为功率放大器PA(发射端射频信号放大)、滤波器filter(发射、接受端信号滤波)、低噪声放大器LNA(接收端信号放大,降低噪声)、开关switch(不同通道切换)、双工器duplexer(信号选择,实现滤波匹配)、调谐器tuner(天线信号通道阻抗匹配)等。

三、各种射频器件科普

滤波器Filter:选通特定频率,过滤干扰信号

滤波器(Filter),是射频前端中最重要的分立器件,使信号中特定频率成分通过而极大衰减其他频率成分,从而提高信号的抗干扰性及信噪比。目前在手机射频市场中主要采用声学滤波技术。

根据制造工艺的不同,市面上的声学滤波器可分为声表面波滤波器(Surface Acoustic Wave,SAW)和体声波滤波器(Bulk Acoustic Wave,BAW)两大类。其中SAW滤波器制作工艺简单,性价比高,主要应用于GHz以下的低频滤波,而BAW滤波器插损低,性能优秀,可以适用于高频滤波,但工艺复杂,价格较高。

由于工艺复杂度、技术以及成本的限制,目前通信标准下更多射频前端采用SAW滤波器。但随着5G渗透率的提升,BAW滤波器优异的性能和对高频的支持将使其成为手机射频前端的主流器件。

双工器/多工器:发射/接收信号的隔离

双工器(Diplexer),又称天线共用器,由两组不同频率的带阻滤波器组成。利用高通、低通或带通滤波器的分频功能,使得同一天线或传输线可对两条信号路径进行使用,从而实现同一天线对两种多种不同频率信号的接收和发送。

功率放大器PA:放大射频信号进行发射

功率放大器(PA,Power Amplifier)是射频前端的核心部件,利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。

PA主要用于发射链路,通过把发射通道的微弱射频信号放大,使信号成功获得足够高的功率,从而实现更高通信质量、更强电池续航能力、更远通信距离。PA的性能可以直接决定通信信号的稳定性和强弱。

随着半导体材料的不断发展,功率放大器也经历了CMOS、GaAs、GaN三大技术路线。第一代半导体材料是CMOS,技术成熟且产能稳定。第二代半导体材料主要使用GaAs或SiGe,有较高的击穿电压,可用于高功率、高频器件应用。第三代半导体材料GaN在性能上显著强亍GaAs,但成本较高。目前移动端民用市场主要采用GaAs 作为功放,而GaN在部分基站端应用率先实现替代。未来GaN将成为高射频、大功耗应用的主要方案。

三种材料的特性对比

低噪声放大器LNA:放大接收信号,减少噪声引入

低噪声放大器(LNA,Low Noise Amplifier)是噪声系数很小的放大器,功能是把天线接收到的微弱射频信号放大,并尽量减少噪声的引入,LNA能够能有效提高接收机的接收灵敏度, 进而提高收发机的传输距离。因此低噪声放大器的设计是否良好, 关系到整个通信系统的通信质量。

射频开关Switch:控制电路通断,实现信号切换

射频开关(Switch)的通过将多路射频信号中的任一路或几路控制逻辑连通,实现不同信号路径的切换,包括接收与发射的切换、不同频段间的切换等,以达到共用天线、共用通道,节省终端产品成本的目的。射频开关主要包括移动通信传导开关、WiFi开关、天线调谐开关等。

调谐器Tuner:天线的阻抗匹配

天线调谐器(Tuner)是位于连接发射系统与天线的一种阻抗匹配网络,用以实现信号的接收、滤波、放大、增益控制等功能,使得天线在所有应用频率上辐射功率最大。

5G/Sub-6通信标准下,手机端中4x4下行链路MIMO要求每根天线能够高效地支持更宽的频率范围,相应对射频天线tuner的需求数量也会增加,以提高相应频段的辐射效率。

其他射频前端器件

Envelop Tracker (ET),即包络追踪器,用于提高承载高峰均功率比信号的功放效率,实现自适应功率放大输出。与平均功率跟踪技术相比,包络追踪技术能够让功放的供电电压随输入信号的包络变化,改善射频功率放大器的能效。

RF Reveiver,即射频接收机。射频接收机中,射频信号经天线接收后,通过滤波器、LNA、模数转换器ADC等对信号进行变频解调,最后形成进入基带的基带信号。射频接收机主要分超外差接收机、零中频接收机和近零中频接收机三种。

在过去多年的发展中,射频前端材料也经历了多代的发展。

市场规模与竞争格局

过去十年来,射频前端市场规模一直维持稳定高速增长,2019年市场规模达到170亿美元,相比2011年的63亿美元增长269%。预计到2025年射频前端市场规模可达250亿美元。

射频前端市场规模及同比增速(亿美元)

而在射频前端市场集中程度较高,基本为头部四大厂商垄断,2019年所占份额分别为博通(美国,29%)、思佳讯(美国, 28%)、村田(日本, 22%)和科沃(美国, 18%),其他厂商占比仅为约3%。

射频前端竞争格局(头部四厂商)

其中滤波器市场(53%):SAW滤波器由村田主导,BAW技术基本为博通和Qorvo所垄断;

功率放大器市场(33%):美国三大厂商占据93%的市场份额;

开关及其他组件(10%):思佳讯、Qorvo主导其他射频器件市场。

2019年,滤波器全球销售额为95.2亿美元,其中SAW为53.3亿美元,BAW为41.9亿美元,占比从15年的30%提升至19年的41%,未来随着5G渗透率提升有望持续增加。

2019年,滤波器在中国市场的销售额为26.1亿美元,其中SAW为14.6美元,BAW为11.5亿美元。国内滤波器市场由于自给缺口大,且处于4G-5G切换末期,故市场规模出现负增长,相比15年减少2.4亿美元。未来随着国产化率的提升以及5G移动+基站端渗透增加,有望快速反弹。

滤波器行业属于技术、资本密集型,对于设计经验以及专利布局要求极高。手机射频端随着21世纪以来专利竞争以及激烈并购,逐渐形成了以日系、美系厂商分别垄断SAW、BAW市场格局。

SAW、BAW全球市场格局(2019年)

Broadcom、Murata凭借多年技术积累以及专利布局作为第一阵营瓜分高端市场;Skyworks、Qorvo、TDK、TaiyoYuden等凭借综合技术以及配套模组作为第二阵营占据中端市场;韩台陆厂作为第三阵营目前以低端市场为主,并努力向中高端市场渗透。

滤波器市场基本被日美厂商所垄断

SAW:以村田、TDK和太阳诱电为首的日系厂商长期深耕SAW市场,其中村田全球SAW份额占比达到47%,并持续推出TC-SAW和IHP-SAW等产品以适应5G需求;

BAW:博通Avago凭借强劲的技术实力和专利布局垄断87%的BAW滤波市场,思佳讯和Qorvo紧随其后凭借模组化配套生产位居第二梯队。

国内厂商仅有少部分中低端SAW布局,BAW滤波器目前仅有天津诺思等小部分量产。

2019年,全球PA市场规模为56亿美元,预计到2023将将增长至70亿美元。

由于射频器件对设计经验及工艺的要求较高,且PA为结构最复杂的前端核心器件,目前全球市场基本上由美国三大射频巨头所垄断。其中Skyworks占43%,Qorvo占25%,Broadcom占25%,其余厂商份额占比不足10%。

全球PA市场格局(2018年)

由于5G带来的天线以及滤波器组件的增加,终端内部空间减少,为PA多频段设计带来挑战。模组化趋势为体积减少以及设计流程简化做出贡献,预计2025年PA类模组规模将达到104亿美元,成为射频前端最大细分市场。

在2G-4G频段,由于CMOS工艺成熟且易于集成,在终端中被广泛使用。但在高频频段,GaAs性价比以及功率特性突出,二代材料成为PA、天线等器件的材料首选;在基站端,由于GaN高频特性较好,三代半导体材料被广泛使用在基站侧,未来发展空间广阔。

PA的三代半导体材料功率与频率特性

随着4G技术普及以及5G标准的推进,智能终端中需要支持频段数量大幅度上升,需要更多开关提升对更多频段信号的接收能力。2011年以来,射频开关switch市场快速增长,2019年市场规模达到19亿美元,并随着5G大规模商用将迎来快速增长,预计2023年市场规模将达到35.6亿美元。

射频开关市场龙头厂商为Skyworks(思佳讯)以及村田,均为综合性射频器件及设计方案提供商,模组化实力强劲。国内射频开关及LNA组件领导者为卓胜微,目前已经开始国产前端模组化布局。

全球射频开关市场规模及预测(美元)

LNA一般用于接收端放大天线信号,并具有抑制噪声的优势。低噪声放大器目前更多作为模组化组件,与射频开关等简单组件集成在LFEM、WIFI FEM以及LNA Bank等模组当中,2019年市场规模达到14.9亿美元,2023年有望达到17.9亿美元(按分立器件计算)

目前国内厂商以卓胜微、紫光展锐在LNA领域结合自身平台以及模组化集成优势,在LNA出货量方面领先行业,但与国际先进厂商差距较大。

全球滤波器市场规模(亿美元)

日美四大射频巨头介绍

射频前端产业由分立器件厂商、模组厂、整机品牌以及平台设计服务商组成。其中上游分立器件头部厂商综合性生产销售能力较强,得以更早进行模组化布局,形成先发优势。

射频前端国内外主要厂商

全球射频前端市场集中度较高,前四大厂商Skyworks、Qorvo、Broadcom和Murata占据90%以上的市场份额,并不断通过整合并购,业务综合多样化扩张;

在PA及LNA等功率放大器领域,思佳讯占有接近一半市场,但正被Qorvo迎头赶上;在滤波器方向上,村田独占SAW滤波器47%的市场份额,而博通则寡占87%的滤波器市场。

四大射频巨头中,思佳讯与Qorvo营收主要来自前端模组,产品类型中,而博通及村田业务则涉及各类IC、软件、被动元件和封装等,业务规模庞大,营收均超过百亿美元。

注:市值数据截至2020年10月25日

Skyworks:受惠中国市场,大力发展5G、物联网

Skyworks:受惠中国市场,大力发展5G、物联网

Skyworks成立于1962 年,总部位于美国马塞诸塞州,致力于开发用于射频和移动通信系统的半导体器件。受益于完善的产品结构、在 IoT及 WiFi 领域的拓展和在苹果手机中的广泛应用,同时也是多家国内手机品牌射频器件供应商,中国区收入占比仅次于美国地区(2019年占比22%)。公司2019财年实现营收33.77亿美元,归母净利润8.60亿美元。

Skyworks 在 SAW 滤波器、射频功率放大器、射频开关等产品上都有完善的产品覆盖,并有较强的芯片集成模组能力。2019年占据全球射频PA 43%的市场份额和射频开关23%的市场份额。

Skyworks的发展历程

为迎接5G时代带来的挑战,Skyworks打造Sky5® 平台,通过高度集成的发射/接收端解决方案和分集接收模组(DRx)简化了5G架构的开发难度,未来在IoT以及5G市场布局有望加速。

Sky5® Ultra集成解决方案采用DSBG封装减小尺寸,提升TC-SAW和BAW在目标频段的性能,具备领先的传输和接收能力,在为终端带来可靠的网络连接传输同时优化手机电池寿命。Sky5® LiTE前端解决方案面向大众市场,支持高达100 MHz的5G新无线电(NR)波形带宽,可适配所有领先芯片提供商接口。

Qorvo:射频通信“新”军,并购推动业务快速扩张

Qorvo由TriQuint Semiconductor 和RF Micro Devices(RFMD)于2015 年合并成立,总部位于美国北卡罗莱纳州,专注于射频通信及国防产品的生产,合并后拥有天线、PA、滤波器和射频开关的全业务布局。2019年公司实现营收32.29亿美元,归母净利润3.34亿美元。

Qorvo成立后,公司不断进行并购扩大产品线,业务布局基本覆盖射频前端全产业链。其中BAW技术发展迅速,占据全球滤波器8%的市场份额,仅次于Broadcom 。公司在全球射频开关和LNA器市占率高达35%,射频PA市占率也到了达25%。

Qorvo发展历程

Qorvo凭借技术优势和模组化布局长期在射频产品领域提供商中占据领导地位。公司通过收购获得GaN、GaAs以及SOI技术应用与天线以及射频PA器件中,并继续收购Cavendish等RF MEMS工艺厂商进一步升级其射频前端器件的生产工艺,通过模组化集成形成全业务先进布局。

公司在2020Q1完成了对 Custom MMIC 和 Decawave 的收购,进一步布局低功耗IoT以及UWB技术,结合此前物联网相关技术的收购,在物联网、5G领域形成更多影响力。

Broadcom:第五大半导体厂商,射频业务实力强劲

Broadcom Limited,2016年由Avago以370亿美元收购博通公司后更名,目前双总部分别位于美国和新加坡,主营业务为半导体业务以及软件业务。2019年实现营收225.97亿美元,归母净利润34.6亿美元,为全球第五大半导体企业,射频业务占比约30%。

Broadcom 提供无线嵌入式解决方案和射频组件产品,包括全套的射频前端产品。公司在射频前端领域的布局较久,在滤波器(BAW)以及前端模组方面的实力雄厚,独占全球 BAW 滤波器市场87%的市场份额。

博通-安华高通过对多家半导体、通信企业的并购布局,不断扩宽业务范围、加深技术护城河。目前公司战略发展方向逐渐向软件调整,但半导体及射频业务仍然广受全球用户认可,贡献超过30%以上的公司营收。

Murata:日系老牌电子器件龙头,专利布局多样全面

Murata(村田)成立于1944年,总部位于日本京都,主要产品为先进电子元器件及多功能通讯模组、功率IC的设计和制造。2014 年 8 月收购 Peregrine 半导体公司,拓展射频前端业务。2019年实现营收141.91亿美元,归母净利润16.93亿美元,其中海外营收占比超过90%,是日本最大的电子元器件制造商。

村田是全球领先的电子元器件提供商,其被动元件、连接器技术及MEMS工艺实力雄厚。在射频方面,公司提供包括滤波器以及射频开关等器件及模组化产品,占据全球 SAW 滤波器市场47%的市场份额。

知识产权以及专利布局是村田重要的发展战略,公司注重新产品和技术的独立开发,在射频产品领域尤其是SAW技术上具有难以超越的优势。2018年,公司在日本拥有8121项专利申请,在全球拥有12474项专利申请,申请数量全球排名29。

公司依托全面专利布局以及优秀的供应链管理能力,向全球各地客户提供各类电子元器件,占据较高市场份额。其中陶瓷电容市占率达到40%,SAW滤波器全球占比50%,电磁屏蔽件EMI全球占比35%。通信连接器模组份额为55%以上,市场份额均为全球第一。

以上内容就是本次推文的主要内容,在今后的文章里,同大家一起分享射频芯片与基带的关系,敬请期待。

我是六六科技人,我们说车谈科技。欢迎有相同兴趣的朋友加入我们,聊汽车、聊科技、聊热点、聊人生。

Ic卡与射频卡的区别

Ic卡、Rfid,大家一定不会陌生了。那Ic卡、Rfid具体指的是什么?

Ic卡、Rfid又有什么区别呢?

以下,将与大家分享Ic卡、Rfid的知识。

Ic卡的概述

IC卡是继磁卡之后出现的又一种新型信息工具。IC卡是指集成电路卡,一般用的公交车卡就是IC卡的一种,一般常见的IC卡采用射频技术与IC卡的读卡器进行通讯。IC卡与磁卡是有区别的,IC卡是通过卡里的集成电路存储信息,而磁卡是通过卡内的磁力记录信息。IC卡的成本一般比磁卡高,但保密性更好。

非接触式IC卡又称射频卡,成功地解决了无源(卡中无电源)和免接触这一难题,是电子器件领域的一大突破。主要用于公交、轮渡、地铁的自动收费系统,也应用在门禁管理、身份证和电子钱包。

Ic卡的工作原理

IC卡工作的基本原理是:射频读写器向IC卡发一组固定频率的电磁波,卡片内有一个LC串联谐振电路,其频率与读写器发射的频率相同,这样在电磁波激励下,LC谐振电路产生共振,从而使电容内有了电荷;在这个电容的另一端,接有一个单向导通的电子泵,将电容内的电荷送到另一个电容内存储,当所积累的电荷达到2V时,此电容可作为电源为其它电路提供工作电压,将卡内数据发射出去或接受读写器的数据。

Ic卡的分类

智能卡属于半导体卡。半导体卡片采用微电子技术进行信息的存储、处理。

一、按照其组成结构,智能卡可以分为一般存储卡、加密存储卡、CPU卡和超级智能卡。

存储器卡

其内嵌芯片相当于普通串行EEPROM存储器,这类卡信息存储方便,使用简单,IC卡价格便宜,很多场合可替代磁卡,但由于其本身不具备信息保密功能,因此,只能用于保密性要求不高的应用场合。

逻辑加密卡

加密存储器卡内嵌芯片在存储区外增加了控制逻辑,在访问存储区之前需要核对密码,只有密码正确,才能进行存取操作,这类信息保密性较好,使用与普通存储器卡相类似。

CPU卡

CPU卡内嵌芯片相当于一个特殊类型的单片机,内部除了带有控制器、存储器、时序控制逻辑等外,还带有算法单元和操作系统。由于CPU卡有存储容量大、处理能力强、信息存储安全等特性。广泛用于信息安全性要求特别高的场合。

超级智能卡

在卡上具有MPU和存储器并装有键盘、液晶显示器和电源,有的卡上还具有指纹识别装置等。

二、根据卡与外界数据交换的界面不同划分为:

(1)接触式IC卡

该类卡是通过IC卡读写设备的触点与IC卡的触点接触后进行数据的读写。国际标准ISO7816对此类卡的机械特性、电器特性等进行了严格的规定。

(2)非接触式IC卡

该类卡与IC卡设备无电路接触,而是通过非接触式的读写技术进行读写(例如光或无线技术)。其内嵌芯片除了CPU、逻辑单元、存储单元外,增加了射频收发电路。国际标准ISO10536系列阐述了对非接触式IC卡的规定。该类卡一般用在使用频繁、信息量相对较少、可靠性要求较高的场合。

RFID射频卡的概述

射频识别即RFID(Radio Frequency IDentification)技术,又称电子标签、无线射频识别,是一种通信技术,可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触。常用的有低频(125k~134.2K)、高频(13.56Mhz)、超高频,无源等技术。RFID读写器也分移动式的和固定式的,目前RFID技术应用很广,如:图书馆,门禁系统,食品安全溯源等。

RFID的基本组成部分

由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象。

阅读器(Reader):读取(有时还可以写入)标签信息的设备,可设计为手持式rfid读写器(如:C5000W)或固定式读写器;天线(Antenna):在标签和读取器间传递射频信号。

RFID技术的工作原理

RFID技术的基本工作原理并不复杂:标签进入磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者由标签主动发送某一频率的信号(Active Tag,有源标签或主动标签),解读器读取信息并解码后,送至中央信息系统进行有关数据处理。

一套完整的RFID系统, 是由阅读器(Reader)与电子标签(TAG)也就是所谓的应答器(Transponder)及应用软件系统三个部份所组成,其工作原理是Reader发射一特定频率的无线电波能量给Transponder,用以驱动Transponder电路将内部的数据送出,此时 Reader便依序接收解读数据, 送给应用程序做相应的处理。

以RFID 卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成:感应耦合(Inductive Coupling) 及后向散射耦合(BackscatterCoupling)两种。一般低频的RFID大都采用第一种式,而较高频大多采用第二种方式。

阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和应答器之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源应答器提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。应答器是RFID系统的信息载体,目前应答器大多是由耦合原件(线圈、微带天线等)和微芯片组成无源单元。

相关问答

帮个忙大神们!有谁知道么射频ic与射频有什么区别?

[回答]射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是RadioFrequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。...

IC卡与磁卡有什么区别呢?

IC卡与磁卡区别当前,伴随着国民经济的信息化和电子化,磁卡、IC卡已经广泛应用到生产生活中。现在我国每年各种磁卡、IC卡已经达到两亿张规模的发卡总量。...

IC卡和ID卡发卡器有什么区别,各自工作原理是什么?

分为接触式和射频两种,ic卡顾名思意,就是卡里面密封了一块ic,该ic包括一个存储器,用于存储用户id之类的信息,这些信息是经过加密的。非接触式的卡里,还有RF...

ic卡m1卡区别?

一、用途区别1、IC卡主要用于公交、电信、银行、车场管理等领域。主要的功能包括安全认证,电子钱包,数据储存等。常用的门禁卡、二代身份证属于安全认证的应...

请问IC有什么IC?(就是IC的名字)电阻一个有多少种颜色来计算?...

[最佳回答]你说的ic应该指的是集成电路吧,按处理的信号类型分类:模拟.数字,混合信号,射频的ic按生产目的分类:通用的,专用的按制造工艺分类:双极和cmos按设计...

无线射频技术和和射频识别技术的区别?

[回答]我个人的理解“无线射频技术”是让阅读器发出射频信号,使卡中产生感应电流,将卡中信息给阅读器,然后进行处理。WiFi是通过AP发出信号和手机等进行信...

射频功放匹配的最佳方法?

最佳方法是通过负载匹配网络来调整输出端的阻抗,以便使功放的输出端点阻抗与负载阻抗相匹配。这可以通过使用网络分析仪等工具进行实际测试,然后通过调整匹配...

请问这个是什么类功放,两个NPN管子是如何工作的?

我只定性分析下:1.两个NPN管子,看似是AB类放大,但其实两个管子的导通时刻并不互补,而是相同的,虽然输入小信号极性相反。这倒不重要。2.二极管D1和R2...我...

射频id卡的区别在哪里?-一起装修网

一起装修网问答平台为您提供射频id卡的区别在哪里?的相关答案,并为您推荐了关于射频id卡的区别在哪里?的相关问题,一起装修网问答平台:装修问题,因我而止。

IC是什么意思?

集成电路(IC)有时称为芯片或微芯片,是一种半导体晶圆,其上制造了成千上万个微型电阻器,电容器和晶体管。一个集成电路可以作为放大器,振荡器,计时器,计数...