功放ic铁壳 大功率,重塑完整音乐的奥秘

小编 2024-10-08 技术分享 23 0

大功率,重塑完整音乐的奥秘

开宗明义地说说,为什么需要500瓦、1000瓦,甚至到3000瓦的大功率功放?家庭音响真用得到吗?

很多朋友误解,认为大功率一定会带来大声压,家庭环境只需要10瓦的功放就够了。其实功放的输出与扬声器最大声压并没有绝对关系,还须衡量音箱的灵敏度,灵敏度是衡量扬声器能量转换的指标(电→声转换率),高灵敏度的扬声器不耗功率,相差3dB的扬声器要做到同样的声压级(相同距离),所用的功率要相差将近一倍,比如:一只90dB/W/m的扬声器,在1米远获得100dB的声压级,要10瓦的功率,那么一只87dB/W/m的扬声器,要在相同距离获得相同的声压级就需要20瓦的功率。此外,声压与距离也有关系,距离增加1倍声压就会衰减6个dB。在1米处120dB的音箱,在离开16米的位置声压是96dB。换句话说,在相同条件下,每增加一倍的功率才能让扬声器提升3dB的声压,但随着距离增加声压又会降低,这时需要更多功率。

一些高灵敏度音箱让我们觉得声压响度够了,回过头来用示波器看看功放,我们会发现小音量时也许只需1瓦的功率,音乐高潮很多波峰会轻易冲过10瓦以上甚至更高,如果功放只有10瓦输出,这些过冲的瞬间信号就被削顶,不管你能否听到,对整个音域必有影响,所以一般建议大家用数倍以上的功率储备。电子管功放被认为同等功率驱动力优于晶体功放,主要是电子管并非齐齐的削顶,过载失真被柔化不容易听出来,而不是它有先天神力。大功率功放的其他好处包括更轻松的听感、更好的控制力、更低的失真、更无压缩的动态,以及更好的安全性。是的,会烧喇叭的,一般都是过载失真与直流输出的小功放,而不是力可移山的大家伙。

设计师方光豪以Audio Music品牌推出的成名作AM833后级,从一开始他就是大功率的拥护者

我承认小功率直热式三极管在音质音色方面确有吸引人之处,因为只有一个放大元件,完全没有交越失真,可以重现质地纯粹的音乐,但除非搭配100dB以上的高灵敏度号角音箱,否则2A3、300B都会成为“缺陷美”。开平牛魔王方光豪始终都是大功率的拥护者,以Audio Music品牌推出的成名之作,就是以833电子管制作的单声道功放,输出功率达到惊人的130瓦,直接竞争对手是日本WAVAC Audio Lab。WAVAC的旗舰后级SH-833卖价35万美元,而方光豪的制作不到1/10价格,难怪欧洲人看了也疯狂。

作为自修成功的设计师,方光豪一开始就认为小功率无法完整重现大动态的音乐,在他开发音箱的过程中,更是一再证明了唯有充裕的功率,才能将扬声器的潜力彻底激发出来。以833单端胆机来说,130瓦的电子管已经能让地球上一切喇叭发出足够巨响,WAVAC公司的座右铭是“聆听光的声音”,表示透过833胆机欣赏音乐,可以有完全不同凡响的体验,超出大脑可以思考的范畴。方光豪的833胆机线路是完全自己独创的,这只强放管是RCA曾经推出过最大功率的单端直热三极管,当年用来给广播电台使用,放在家用音响有许多障碍要克服。日本WAVAC选用KT-88做驱动级,与833A之间使用低阻抗变压器藕合,第一级放大使用超低噪讯的WE 437A以求得最大的动态范围,而且WAVAC还使用直接交连,在音乐路径上舍弃了电容避免额外音染。方光豪的设计是以ECC88、直接耦合KT88,KT20可者KT150。跟着变压器推动833,输出端同样是直接耦合线路。

方光豪自己设计制作的音箱,钻石高音、陶瓷中音、Eton低音,加上巨大的外置分音器,太惊人了!

从方光豪公布的参数来看,AM833S单声道后级的无负反馈频宽20Hz-100kHz,信噪比>98dB(WAVAC只有90dB),电源独立四分体设计一声道重量76公斤(WAVAC为电源一体式设计,重55公斤),电气特性比天价的WAVAC更优异!电源分体设计是减少电源变压器的磁场干扰,里面有二只大型的双C HiB电源变压器,加上多组稳压与最有效隔离噪音的π型滤波电路,能稳定提供源源不断的纯净动力。推动变器和输出变压器,都是使用特别定制的特殊磁性材料和复杂的绕线工艺,使其能有10Hz-120KHz的频宽。机内使用的线是纯银和特殊定制的矩型OCC铜线,加上CNC加工的超厚铝合金机箱,的确是非常壮观。后来方光豪又将833胆机升级,变成纯银线绕制的变压器,性能应该还会更上层楼。由于833强放管阳极电压很高(1200V,他们另一款805胆机工作电压也高达950V),输出变压器的绕制绝缘处理极为棘手,激励推动使用的推动变压器也很难完美制造。可制作变压器恰好是方光豪的拿手好戏,别忘了他的“开平牛魔王”美誉。

大功率胆机声音会不会粗糙?据我知道,日本WAVAC的833胆机可以说是用最简单的架构追求最大音乐动态范围的代表,声音舒服、流畅、刚中带柔,有着很纯很美的乐器质感。而方光豪的Audio Music AM833S表现人声与弦乐甜美柔顺,播放爆棚音乐又威猛有力,与同样功率的KT88推挽机相比,中频更具胆味,高音更加通透光泽,直热式的醇美绝对比旁热式的KT88更上层楼。虽然没有机会拿AM833S与日本WAVAC同场PK,但看到二者的价格差距,我认为方光豪简直在做慈善事业。

试听的这套四件式后级,是客户订制使用112个功率管,每声道输出1500瓦的巨无霸,量产品AM1000的外观与结构一样,功率降为1000瓦。

这套四分体的功放,光是未加工的铝合金重300公斤,加工后重量仍有220公斤

两年前方光豪再次挑战自我,这次他没有向FU501、6T4等巨无霸发射管下手,反而来了个大转弯,尝试做起晶体管后级了。量产型号AM1000,代表输出功率1000瓦,如果客户有需要也可以特别订制,最大功率可以做到3000瓦!家用音响目前的功率冠军应该是美国宝达Boulder,单声道旗舰3050在8欧姆负载下可输出1500瓦,2欧姆负载输出功率4000瓦甲类功率,最高耗电量高达6000瓦。Boulder线路采全平衡设计,每声道使用的双极晶体管多达120颗,48个滤波电容。并且内含五颗全密封超大型环形变压器。每声道重达204公斤,外加一个35公斤重的花岗石底座。这是个他人难以企及的高标准,Boulder采用独家偏压自动调整技术,可以实时侦测电压、电流的输出状态与阻抗变化情形,并且以纯模拟控制方式,快速调整偏压,以应付音乐中突如其来的瞬时与动态变化,以便提升最佳工作的效率。

会拿Boulder说事,因为它可能是目前家用音响中仅存的巨无霸。2008年瑞士高文Goldmund推出过Telos 5000旗舰后级,全球限量20套,重260公斤/台。Telos 5000的功率相当可观,8Ω负载时每声道持续输出功率达1250瓦,2Ω负载时功率更可倍增到5000瓦,而标称总谐波失真竟低达0.0005%,根据Audio Precision仪器测试标准,0.0005%的失真已臻“三零俱乐部”,只有最顶级的后级才能达到如此境界。限量版的高文后级估计已经卖完了,Boulder仍在产,价格却是高高在上难以亲近。方光豪打造晶体后级,首先就把挑战对象锁定为Boulder,连铝合金CNC制作的机壳都有点类似,但是他又加入麦景图McIntosh的设计理念,在输出端连接一个超频宽的输出变压器。

四件式后级电源箱中有二个巨大的电源变压器

2200瓦的双C型变压器有多大?对比下香烟盒就知道了

制作难度极高的四线并绕变压器

每声道使用56只功率晶体,夸张啊

输出变压器可以把高压小电流变成了低压大电流,把晶体管输出的高阻抗变成低阻抗,满足了放大器与负载的特性需要,另外能隔断直流,起到保护扬声器的作用。大部分反对输出变压器的意见,是认为它会影响速度与瞬态反应、降低控制力、极低频受限等。还是那句话,别忘了开平牛魔王的拿手绝活是什么!

量产版的AM1000后级为二件式设计,电源直接安置在里面

制作超大功率晶体功放,主要困难点有几个:电源、晶体管、散热的机箱,我们一一来检视:

●超大电源变压器。AM1000使用二个2200W四线并绕的单C HiB电源变压器,加上多组稳压与最有效隔离噪音的π型滤波电路,由于体积太大了,只能独立装箱。方光豪认为环形变压器的效率虽高但声音不理想,所以他坚持用绕制难度很高的单C型变压器。从图片中可以看出来,2200瓦的变压器到底有多大,我一个人几乎抱不起来,而AM1000后级每声道居然用了二个,这是强悍驱动力的绝对保证。

●超多功率晶体管。要把功率提升上去有两种选择:①寻找额定电流大的晶体管,也就是曲线更平坦的晶体管②将晶体管并联以使电流分散。不管是三极管(GTR)、场效应管(MOSFET)、可关断晶闸管(GTO)或绝缘栅双极晶体管(IGBT),目前都无法以一对管达到大功率后级的要求。听说中车自主研发的大功率IGBT模块,已经成为高铁最关键的元件之一,直接影响列车是否能瞬间启动、舒适飞驰与稳定停车。牵引级的IGBT模块最大功率达到一千万瓦,承受最高电压6500V,标称电流高达600A,可耐高温与各种恶劣环境,不知道有没有人想过把类似产品用在音响上?做梦吧!方光豪仍然采用多对功率晶体管并联的有效方式,AM1000后级每声道使用56个精密配对的摩托罗拉功率管,其他小晶体管和元件也都是精密配对,达到极低失真。

问题就出在“精密配对”,不少人会认为NPN和PNP管的放大倍数一样就是配对,配对也就是配这个参数。其实功放透过并联功率管来实现大电流输出,并联的管子的一致性才是关键,同极性管子必须参数很接近才能并联,否则小则电流不一样,严重时会造成烧管(因为某个管子的电流特别大)。也就是说,最重要的是同极性间管子的Ube-IC曲线配对,然后再做同极性HFE值(放大倍数)配对,如果可以做异极性间VBE配对就更好,只是这耗时费力的工作,很多厂家直接无视了。晶体管出厂时一般只做基本的测试,将BETA值不同的管子大略分类就卖给下游厂(有些厂打上标记,比如东芝的管子就用英文的“黄”、“绿”、“蓝”等表示其BETA范围),离散性通常很大,同一批产品会相对好一些。功率晶体管没有精密配对结果往往是声音粗糙不够圆滑细腻,早期大功率晶体机也因此背负恶名。精密配对的功率晶体管除了工作稳定,射级负反馈电阻一般不需要很大,输出内阻变得非常低,对音箱的控制力有效提升。

搭配使用的AM R-T3前级,音量变压器、输出变压器,同样夸张啊

前级的电源箱,这样不惜血本的设计声音能不好吗?

我问方光豪,AM1000后级每声道用28对功率晶体管,他是如何配对的?还记得80年代一代铁壳晶体管王摩托罗拉MJ11032/033?它的内部由2只三极管构成达林顿三极管,具有很的高放大倍数,高音通透明亮,中音圆润饱满,低音更是强劲有力富弹性,具有力拔千斤的气势和雷霆万钧的动态,醇厚充满能量的声音是其他晶体管无法相比的。方光豪认为,晶体管的品质与音质甚至要比配对重要,因此他只选择安森美ON Semiconductor(摩托罗拉改制)的功率晶体,放弃美国德州仪器、意法半导体ST、荷兰飞利浦、美国仙童、日本NEC、日本三洋、日本东芝与三肯等其他功率管。他大量采购安森美功率管,再一个个地以仪器测量配对,方光豪说AM功放产量少,所以他可以耗时间慢慢磨,其他大型工厂不可能干完全没效率的事。至于为什么一定要这么多晶体管并联?美国最著名的放大器设计师之一Nelson Pass说,末级功率管的最佳工作点是30-50mA,测量上也证实失真最少,其他设计师喜欢将电流调大一些,方光豪却选择了增加功率晶体(当然也增加成本),但保证最佳工作点的笨方法!

●超重全铝机箱。目前音响厂家普遍面临的问题是加工厂嫌数量太少不愿接单,尤其是CNC数控机床加工,方光豪说AM1000这套2分体的功放,未加工的铝合金块重达200公斤,加工后重量仍有160公斤,这还不包括加入巨大电源变压器与输出变压器的重量。而加工这种大块头的CNC可不是到处都有,你可以说AM1000的外观缺少独创性,但不得不承认最终成品触感一流,边缘锐角与表面平滑度已臻国际一流水平,方光豪果然不简单!AM1000两部单声道后级完全对称,机箱使用6061-T6航天级厚铝板打造,CNC车床精密铣削的圆孔散热片美观实用,全机没有可见的装配螺丝,如此加工质量可以完美满分过关,国内尚无其他音响厂家可以做到。

主机箱内所有功率晶体管靠左右二侧散热片锁固,中间有个巨大的双层铝合金盒,里面是屏蔽的输出变压器,上面的增益、控制线路板隔着防震阻尼材料以三文治式阻尼方式安装,目的是消除即使最微小的机械共振,以免产生任何麦克风效应污染音乐讯号输出。机内接线部分采用定制的矩形纯银线,这是方光豪很引以为傲的材料,也说明了他从材料源头就自己掌控的决心。

俗话说:“前级出声,后级出力。”选择什么样的线路形式决定整机的性能,选择元件决定音色,制作水平和工艺决定了内外在质量和可靠性。方光豪用来搭配AM1000后级的R-T3三件式分体电源前级,除了以纯银线绕制的输出变压器,33档双层步进式电位器与音量变压器,还有众多复杂接线,当然也都是纯银线制作。放大部分使用二只6H30或6H6N管驱动二只6922双三极管,看到R-T3前级漂亮的内部线路,心中只能大声叫好!R-T3前级是左右声道的电源全部独立装箱,小一号的R-T2则只有一个电源箱,里面仍是巨大的双C HiB电源变压器,不用扼流圈避免影响速度与微弱信息。

在AM1000后级部分,不用常见的中功率管推动数对大功率管方式,而是采用了两级放大,推动级和输出级使用一样的大功率管,这可以极大提高了推动级的线性电流推动力,使其推动多管并联更加轻松自如,在大功率输出时动态更加凌厉,动力强劲。为保证源源不断的能量,AM1000推动级和输出级采用分开供电的方式,重量几十公斤的变压器次级绕组线直径非常粗壮,输出30A以上的电流都没问题。输出级滤波并未使用大型电解电容,而是许多小电容并联工作以获得更敏捷的充放电速度,对瞬态反应、控制力都有帮助。高可靠性和独立性是AM1000的另一设计特点,为突出大功放的可靠性,将功放的电压放大级和功率输出级分开设计。由于有超宽带的输出变压器,AM1000后级可以十分轻松应付2欧至8欧的负载阻抗变化及大电流输出,同时线路中各种冗余量都较大,也取消过流保护电路,以免限制输出的动态和开关干扰,输出级采用无整体负反馈模式以减小瞬态互调失真。为达到强劲和完美的控制力,AM1000设计的每声道56只晶体管并联输出,可以想见静态电流十分高,以每个功率管线性不失真输出电流为5A来计算,AM1000的瞬间输出电流绝对足以让非洲大象立刻趴下。

用来测试配对晶体管用的仪器,方光豪说只有他们这样的小厂,才会耗时费力做这种事情

在方光豪设计的听音室,用全套他制作的功放、音箱、线材开声,很难判定AM1000后级的真正实力。我们听了一些RR唱片的大动态爆棚录音,倒是可以体验到堂堂皇皇的气质,它中性,但又带有温暖的味道。最吸引人之处就是弦乐与钢琴都带有稍暗的木头味以及适度的黏滞感,这使得小提琴与钢琴听起来更自然,更真实,更耐听。在推力方面,我听到这套功放是使用112个功率管输出1500瓦的订制版,那种绵绵不绝的暗劲丝毫不显粗暴,高、中、低频三个频段都很平衡。欣赏管弦乐群的声音饱满而丰富,而且低频基础雄厚有弹性,许多低频呈现出丰满而有弹性的下沉尾音,更让管弦乐呈现金字塔型结构之美。那是非常丰满、丰富、音乐规模感庞大又充满弹性的美声表现,搭配着小提琴美妙的琴声,让人听了陶醉不已。

虽然属于内敛不张扬的个性,但是声音的细节很多,分析力很强,即使音箱使用了穿透力很强的钻石高音,高频照样抓得住不会飙出来,小提琴有很美的光泽。喜欢拿古典音乐当调音标准的方光豪,果然获得了极佳成绩,一些小品录音听下来,在宁静中感受到很多的细节。这些细节不凸显、不强调,不抢耳,而是很自然的浮现,让吉他、钢琴、小提琴等乐器质感更真实,音乐更生动。1500瓦大功率的实力不仅显示在爆棚音乐的从容不迫、管风琴凝聚有线条,以及低音大鼓的逼真形体,更表现在全频段一流的控制力。你听过现场的铜管合奏吗?那声音一点都不刺耳,而且还具有温暖的光泽与震撼人心的能量,AM1000内敛又自然的特色播放铜管音乐时,不但形体感浮凸,还能完整表达出铜管该有的光泽、铜管的厚度与破金振动质感,那是真正顶级功放才能发出的声音啊。

使用矩形纯银导体制作的电源线,这种材料在AM产品中大量可见

我必须说,AM1000真是超级超级超值的功放,从外观来看,四件式全铝CNC加工的机箱气派豪华,摆在音响室绝对是吸引眼球的目标。从声音上来说,它不哗众取宠,听起来好像没有化妆,但一切又那么的真实,细腻顺滑程度堪比小功率胆机,但音乐的完整性却又远胜胆机。论乐器的质感与音乐的魅力,或许少了一点华丽的音质音色,但AM1000丝毫不输给百万元级的Boulder后级。以它的售价、输出功率与声音表现做综合衡量,AM1000甚至可以说是中国,不,应该说地球上性价比最高的大功率后级。喜欢拿音响当奢侈品的人就别理会了,像这种充满内涵声音绝佳的音响产品,所有实用主义的发烧友都应该认真去听一听!

音乐,美的节奏,美的世界,在音乐中能让人感悟人生,亦能让人音悦人生!

还不懂射频芯片吗?最详细解读来了

来源:21ic电子网

传统来说,一部可支持打电话、发短信、网络服务、APP应用的手机,一般包含五个部分部分:射频部分、基带部分、电源管理、外设、软件。

射频部分:一般是信息发送和接收的部分;

基带部分:一般是信息处理的部分;

电源管理:一般是节电的部分,由于手机是能源有限的设备,所以电源管理十分重要;

外设:一般包括LCD,键盘,机壳等;

软件:一般包括系统、驱动、中间件、应用。

在手机终端中,最重要的核心就是射频芯片和基带芯片。射频芯片负责射频收发、频率合成、功率放大;基带芯片负责信号处理和协议处理。那么射频芯片和基带芯片是什么关系?

1. 射频芯片和基带芯片的关系

先讲一下历史,射频(Radio Frenquency)和基带(Base Band)皆来自英文直译。其中射频最早的应用就是Radio——无线广播(FM/AM),迄今为止这仍是射频技术乃至无线电领域最经典的应用。

基带则是band中心点在0Hz的信号,所以基带就是最基础的信号。有人也把基带叫做“未调制信号”,曾经这个概念是对的,例如AM为调制信号(无需调制,接收后即可通过发声元器件读取内容)。

但对于现代通信领域而言,基带信号通常都是指经过数字调制的,频谱中心点在0Hz的信号。而且没有明确的概念表明基带必须是模拟或者数字的,这完全看具体的实现机制。

言归正传,基带芯片可以认为是包括调制解调器,但不止于调制解调器,还包括信道编解码、信源编解码,以及一些信令处理。而射频芯片,则可看做是最简单的基带调制信号的上变频和下变频。

所谓调制,就是把需要传输的信号,通过一定的规则调制到载波上面让后通过无线收发器(RF Transceiver)发送出去的工程,解调就是相反的过程。

2. 工作原理与电路分析

射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。射频技术在无线通信领域中被广泛使用,有线电视系统就是采用射频传输方式。

射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形, 并通过天线谐振发送出去的一个电子元器件,它包括功率放大器、低噪声放大器和天线开关。射频芯片架构包括接收通道和发射通道两大部分。

射频电路方框图

3. 接收电路的结构和工作原理

接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。

该电路掌握重点:1、接收电路结构;2、各元件的功能与作用;3、接收信号流程。

1. 电路结构

接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。

接收电路方框图

2. 各元件的功能与作用

1) 手机天线:

结构:(如下图)

由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。

作用:

a) 接收时把基站发送来电磁波转为微弱交流电流信号。

b) 发射时把功放放大后的交流电流转化为电磁波信号。

2) 天线开关:

结构:(如下图)

手机天线开关(合路器、双工滤波器)由四个电子开关构成。

作用:

a) 完成接收和发射切换;

b) 完成900M/1800M信号接收切换。

逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。

由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。

3) 滤波器:

结构:手机中有高频滤波器、中频滤波器。

作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。

4) 高放管(高频放大管、低噪声放大器):

结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

高频放大管供电图

作用:

a) 对天线感应到微弱电流进行放大,满足后级电路对信号幅度的需求。

b) 完成900M/1800M接收信号切换。

原理:

a) 供电:900M/1800M两个高放管的基极偏压共用一路,由中频同时路提供;而两管的集电极的偏压由中频CPU根据手机的接收状态命令中频分两路送出;其目的完成900M/1800M接收信号切换。

b) 原理:经过滤波器滤除其他杂波得到纯正935M-960M的接收信号由电容器耦合后送入相应的高放管放大后经电容器耦合送入中频进行后一级处理。

5) 中频(射频接囗、射频信号处理器):

结构:由接收解调器、发射调制器、发射鉴相器等电路组成;新型手机还把高放管、频率合成、26M振荡及分频电路也集成在内部(如下图)。

作用:

a) 内部高放管把天线感应到微弱电流进行放大;

b) 接收时把935M-960M(GSM)的接收载频信号(带对方信息)与本振信号(不带信息)进行解调,得到67.707KHZ的接收基带信息;

c) 发射时把逻辑电路处理过的发射信息与本振信号调制成发射中频;

d) 结合13M/26M晶体产生13M时钟(参考时钟电路);

e) 根据CPU送来参考信号,产生符合手机工作信道的本振信号。

3. 接收信号流程

手机接收时,天线把基站发送来电磁波转为微弱交流电流信号,经过天线开关接收通路,送高频滤波器滤除其它无用杂波,得到纯正935M-960M(GSM)的接收信号,由电容器耦合送入中频内部相应的高放管放大后,送入解调器与本振信号(不带信息)进行解调,得到67.707KHZ的接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。

4. 发射电路的结构和工作原理

发射时,把逻辑电路处理过的发射基带信息调制成的发射中频,用TX-VCO把发射中频信号频率上变为890M-915M(GSM)的频率信号。经功放放大后由天线转为电磁波辐射出去。

该电路掌握重点:

(1) 电路结构;

(2) 各元件的功能与作用;

(3) 发射信号流程。

1. 电路结构

发射电路由中频内部的发射调制器、发射鉴相器;发射压控振荡器(TX-VCO)、功率放大器(功放)、功率控制器(功控)、发射互感器等电路组成。(如下图)

发射电路方框图

2. 各元件的功能与作用

1) 发射调制器:

结构:发射调制器在中频内部,相当于宽带网络中的MOD。

作用:发射时把逻辑电路处理过的发射基带信息(TXI-P;TXI-N;TXQ-P;TXQ-N)与本振信号调制成发射中频。

2) 发射压控振荡器(TX-VCO):

结构:发射压控振荡器是由电压控制输出频率的电容三点式振荡电路;在生产制造时集成为一小电路板上,引出五个脚:供电脚、接地脚、输出脚、控制脚、900M/1800M频段切换脚。当有合适工作电压后便振荡产生相应频率信号。

作用:把中频内调制器调制成的发射中频信号转为基站能接收的890M-915M(GSM)的频率信号。

原理:众所周知,基站只能接收890M-915M(GSM)的频率信号,而中频调制器调制的中频信号(如三星发射中频信号135M)基站不能接收的,因此,要用TX-VCO把发射中频信号频率上变为890M-915M(GSM)的频率信号。

当发射时,电源部分送出3VTX电压使TX-VCO工作,产生890M-915M(GSM)的频率信号分两路走:

a) 取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生1-4V跳变电压(带有交流发射信息的直流电压)去控制TX-VCO内部变容二极管的电容量,达到调整频率准确性目的。

b) 送入功放经放大后由天线转为电磁波辐射出去。

从上看出:由TX-VCO产生频率到取样送回中频内部,再产生电压去控制TX-VCO工作;刚好形成一个闭合环路,且是控制频率相位的,因此该电路也称发射锁相环电路。

3) 功率放大器(功放):

结构:目前手机的功放为双频功放(900M功放和1800M功放集成一体),分黑胶功放和铁壳功放两种;不同型号功放不能互换。

作用:把TX-VCO振荡出频率信号放大,获得足够功率电流,经天线转化为电磁波辐射出去。

值得注意:功放放大的是发射频率信号的幅值,不能放大他的频率。

功率放大器的工作条件:

a) 工作电压(VCC):手机功放供电由电池直接提供(3.6V);

b) 接地端(GND):使电流形成回路;

c) 双频功换信号(BANDSEL):控制功放工作于900M或工作于1800M;

d) 功率控制信号(PAC):控制功放的放大量(工作电流);

e) 输入信号(IN);输出信号(OUT)。

4) 发射互感器:

结构:两个线径和匝数相等的线圈相互靠近,利用互感原理组成。

作用:把功放发射功率电流取样送入功控。

原理:当发射时功放发射功率电流经过发射互感器时,在其次级感生与功率电流同样大小的电流,经检波(高频整流)后并送入功控。

5) 功率等级信号:

所谓功率等级就是工程师们在手机编程时把接收信号分为八个等级,每个接收等级对应一级发射功率(如下表),手机在工作时,CPU根据接的信号强度来判断手机与基站距离远近,送出适当的发射等级信号,从而来决定功放的放大量(即接收强时,发射就弱)。

附功率等级表:

6) 功率控制器(功控):

结构:为一个运算比较放大器。

作用:把发射功率电流取样信号和功率等级信号进行比较,得到一个合适电压信号去控制功放的放大量。

原理:当发射时功率电流经过发射互感器时,在其次级感生的电流,经检波(高频整流)后并送入功控;同时编程时预设功率等级信号也送入功控;两个信号在内部比较后产生一个电压信号去控制功放的放大量,使功放工作电流适中,既省电又能长功放使用寿命(功控电压高,功放功率就大)。

3. 发射信号流程

当发射时,逻辑电路处理过的发射基带信息(TXI-P;TXI-N;TXQ-P;TXQ-N),送入中频内部的发射调制器,与本振信号调制成发射中频。而中频信号基站不能接收的,要用TX-VCO把发射中频信号频率上升为890M-915M(GSM)的频率信号基站才能接收。当TX-VCO工作后,产生890M-915M(GSM)的频率信号分两路走:

a) 一路取样送回中频内部,与本振信号混频产生一个与发射中频相等的发射鉴频信号,送入鉴相器中与发射中频进行较;若TX-VCO振荡出频率不符合手机的工作信道,则鉴相器会产生一个1-4V跳变电压去控制TX-VCO内部变容二极管的电容量,达到调整频率目的。

b) 二路送入功放经放大后由天线转化为电磁波辐射出去。为了控制功放放大量,当发射时功率电流经过发射互感器时,在其次级感生的电流,经检波(高频整流)后并送入功控;同时编程时预设功率等级信号也送入功控;两个信号在内部比较后产生一个电压信号去控制功放的放大量,使功放工作电流适中,既省电又能长功放使用寿命。

国产射频芯片产业链现状

在射频芯片领域,市场主要被海外巨头所垄断,海外的主要公司有Qrovo,skyworks和Broadcom;国内射频芯片方面,没有公司能够独立支撑IDM的运营模式,主要为Fabless设计类公司;国内企业通过设计、代工、封装环节的协同,形成了“软IDM“”的运营模式。

射频芯片设计方面 ,国内公司在5G芯片已经有所成绩,具有一定的出货能力。射频芯片设计具有较高的门槛,具备射频开发经验后,可以加速后续高级品类射频芯片的开发。目前,具备射频芯片设计的公司有紫光展锐、唯捷创芯、中普微、中兴通讯、雷柏科技、华虹设计、江苏钜芯、爱斯泰克等。

射频芯片代工方面 ,台湾已经成为全球最大的化合物半导体芯片代工厂,台湾主要的代工厂有稳懋、宏捷科和寰宇,国内仅有三安光电和海威华芯开始涉足化合物半导体代工。三安光电是国内目前国内布局最为完善,具有GaAs HBT/pHEMT和 GaNSBD/FET 工艺布局,目前在于国内200多家企事业单位进行合作,有10多种芯片通过性能验证,即将量产。海威华芯为海特高新控股的子公司,与中国电科29所合资,目前具有GaAs 0.25um PHEMT工艺制程能力。

射频芯片封装方面 ,5G射频芯片一方面频率升高导致电路中连接线的对电路性能影响更大,封装时需要减小信号连接线的长度;另一方面需要把功率放大器、低噪声放大器、开关和滤波器封装成为一个模块,一方面减小体积另一方面方便下游终端厂商使用。为了减小射频参数的寄生需要采用Flip-Chip、Fan-In和Fan-Out封装技术。

Flip-Chip和Fan-In、Fan-Out工艺封装时,不需要通过金丝键合线进行信号连接,减少了由于金丝键合线带来的寄生电效应,提高芯片射频性能;到5G时代,高性能的Flip-Chip/Fan-In/Fan-Out结合Sip封装技术会是未来封装的趋势。

Flip-Chip/Fan-In/Fan-Out和Sip封装属于高级封装,其盈利能力远高于传统封装。国内上市公司,长电科技收购星科金朋后,形成了完整的FlipChip+Sip技术的封装能力。

随着 5G 进程的加快,5G 基站、智能移动终端及 IoT终端射频功率放大器(PA)使用量大幅增加,将迎来发展良机。智能移动终端射频 PA 市场规模将从 2017 年的50 亿美元增长到 2023 年的 70 亿美元,复合年增长率为 7%,高端 LTE 功率放大器市场的增长,尤其是高频和超高频,将弥补 2G/3G 市场的萎缩。

本文将为大家分享一篇报告有关5G时代,射频功率放大器产业链上的投资机会。该报告中给出一些分析建议,供参考。

5G推动手机射频 PA 量价齐升:4G 时代,智能手机一般采取 1 发射 2 接收架构,预测 5G 时代,智能手机将采用 2 发射 4 接收方案,未来有望演进为8 接收方案。功率放大器(PA)是一部手机最关键的器件之一,它直接决定了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基带外最重要的部分。手机里面 PA 的数量随着 2G、3G、4G、5G 逐渐增加。

5G 基站,PA 数倍增长,GaN 大有可为:4G 基站采用 4T4R 方案,按照三个扇区,对应的射频 PA需求量为 12 个,5G 基站,预计 64T64R 将成为主流方案,对应的 PA需求量高达 192 个,PA数量将大幅增长。目前基站用功率放大器主要为 LDMOS 技术,但是 LDMOS 技术适用于低频段,在高频应用领域存在局限性。

5G 基站 GaN 射频 PA 将成为主流技术,逐渐侵占LDMOS 的市场,GaAs 器件份额变化不大。GaN 能较好的适用于大规模MIMO,预计 2022 年,4G/ 5G 基础设施用 RF 半导体的市场规模将达到 16亿美元,其中,MIMO PA年复合增长率将达到 135%,射频前端模块的年复合增长率将达到 119%。

来源:21ic电子网

相关问答

功放后级沙沙声怎么处理?

将音箱驳入功放,开启电源,挪动电源变压器位置直至哼声减弱,再用金属罩(可以是铁壳)和住固定。如果变压器次级引出是排线,应将其拆开改作编织绞线。2.功放后...

喇叭线碰了一下功放机壳就不响了怎么处理-ZOL问答

喇叭线不小心碰到功放机壳就相当于对地短路,如果功放有输出保护电路会自动断开输出,重新开机就可以了,如果没有保护电路或保护电路失效那很可能造成功放管击穿...

功放有杂音怎么维修?

(1)将音箱驳入功放,开启电源,挪动电源变压器位置直至哼声减弱,再用金属罩(可以是铁壳)和住固定。(2)如果变压器次级引出是排线,应将其拆开改作编织绞线。(3...

功放机有电流声怎么处理-ZOL问答

先换一根线,如果还有噪音就换一下滤波电容,还有要接地线,就是板子和板子之间和铁壳有用(0)回复Z_hang输入对地并接一个1μF的电容,或把你功放的地接电阻比较...

调音过程中怎样排除功放噪音?

调音过程中,经常碰到不同程序的噪音问题,关于曾经制造成形的电路板,以下几种办法能够根治或者降低噪音。一、后级功放板的电流哼声1、将音箱驳入功放,开启...

为什么音响里总发出嗡嗡的声,正常的声音很小-懂得

首先弄清杂音的来源:1、将音量电位器音量调到最低也就是无声(没有音源情况下),这时喇叭应该没有声音,如果仍有嗡嗡声,则是功放机滤波电路电解电容器...

材料和设备如何划分?-答疑解惑-广联达服务新干线

[回答]常用建设工程设备材料划分类别设备材料机械设备工程机加工设备、延压成型设备、起重设备、输送设备、搬运设备、装载设备、给料和取料设备、...

设备和材料的划分原则是什么?-答疑解惑-广联达服务新干线

[回答]回答:网上摘录如下请参考设备与材料的划分原则1、设备:凡是经过加工制造,由多种材料和部件按各自用途组成独特结构,具有功能、容量及能量传递或转...

有哪位知道!!上饶微晶电路板打孔现货,微晶电路板打孔性价...

[回答]8脚的是功放芯片,16脚的是蓝牙芯片,铁壳的是晶振,2个脚的是二极管,白色的是led,其它附件是内存卡插座,u盘插座,充电插座,会转动的是上一曲,下一曲,...

假如禁用了高通的芯片,国内安卓手机厂商还能生存吗?

你好,很高兴能够回答你这个问题。这个问题我想从两个方面来回答:1、高通到底会不会对国内禁用芯片?2、禁用后,国内手机商还能生存吗?高通到底会不会对国...